Rotation Sets and Complex Dynamics

· Springer
電子書
124
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

This monograph examines rotation sets under the multiplication by d (mod 1) map and their relation to degree d polynomial maps of the complex plane. These sets are higher-degree analogs of the corresponding sets under the angle-doubling map of the circle, which played a key role in Douady and Hubbard's work on the quadratic family and the Mandelbrot set. Presenting the first systematic study of rotation sets, treating both rational and irrational cases in a unified fashion, the text includes several new results on their structure, their gap dynamics, maximal and minimal sets, rigidity, and continuous dependence on parameters. This abstract material is supplemented by concrete examples which explain how rotation sets arise in the dynamical plane of complex polynomial maps and how suitable parameter spaces of such polynomials provide a complete catalog of all such sets of a given degree. As a main illustration, the link between rotation sets of degree 3 and one-dimensional families of cubic polynomials with a persistent indifferent fixed point is outlined.

The monograph will benefit graduate students as well as researchers in the area of holomorphic dynamics and related fields.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。