Principal Symbol Calculus on Contact Manifolds

· ·
· Springer Nature
El. knyga
156
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

This book develops a C*-algebraic approach to the notion of principal symbol on Heisenberg groups and, using the fact that contact manifolds are locally modeled by Heisenberg groups, on compact contact manifolds. Applying abstract theorems due to Lord, Sukochev, Zanin and McDonald, a principal symbol on the Heisenberg group is introduced as a homomorphism of C*-algebras. This leads to a version of Connes’ trace theorem for Heisenberg groups, followed by a proof of the equivariant behavior of the principal symbol under Heisenberg diffeomorphisms. Using this equivariance and the authors’ globalization theorem, techniques are developed which enable further extensions to arbitrary stratified Lie groups and, as a consequence, the notion of a principal symbol on compact contact manifolds is described via a patching process. Finally, the Connes trace formula on compact contact sub-Riemannian manifolds is established and a spectrally correct version of the sub-Riemannian volume is defined (different from Popp's measure).

The book is aimed at graduate students and researchers working in spectral theory, Heisenberg analysis, operator algebras and noncommutative geometry.

Apie autorių

Dmitriy Zanin is an author of 100+ papers in non-commutative analysis. This includes the monograph "Singular traces" (written in collaboration with Steven Lord, Edward McDonald and Fedor Sukochev). The key discovery of Dr Zanin is the C*-algebraic nature of the principal symbol.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.