Nonabelian Jacobian of Projective Surfaces: Geometry and Representation Theory

ยท Springer
eBook
227
ํŽ˜์ด์ง€
๊ฒ€์ฆ๋˜์ง€ ์•Š์€ ํ‰์ ๊ณผ ๋ฆฌ๋ทฐ์ž…๋‹ˆ๋‹ค. ย ์ž์„ธํžˆ ์•Œ์•„๋ณด๊ธฐ

eBook ์ •๋ณด

The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This workโ€™s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.

์ด eBook ํ‰๊ฐ€

์˜๊ฒฌ์„ ์•Œ๋ ค์ฃผ์„ธ์š”.

์ฝ๊ธฐ ์ •๋ณด

์Šค๋งˆํŠธํฐ ๋ฐ ํƒœ๋ธ”๋ฆฟ
Android ๋ฐ iPad/iPhone์šฉ Google Play ๋ถ ์•ฑ์„ ์„ค์น˜ํ•˜์„ธ์š”. ๊ณ„์ •๊ณผ ์ž๋™์œผ๋กœ ๋™๊ธฐํ™”๋˜์–ด ์–ด๋””์„œ๋‚˜ ์˜จ๋ผ์ธ ๋˜๋Š” ์˜คํ”„๋ผ์ธ์œผ๋กœ ์ฑ…์„ ์ฝ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๋…ธํŠธ๋ถ ๋ฐ ์ปดํ“จํ„ฐ
์ปดํ“จํ„ฐ์˜ ์›น๋ธŒ๋ผ์šฐ์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Google Play์—์„œ ๊ตฌ๋งคํ•œ ์˜ค๋””์˜ค๋ถ์„ ๋“ค์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
eReader ๋ฐ ๊ธฐํƒ€ ๊ธฐ๊ธฐ
Kobo eReader ๋“ฑ์˜ eBook ๋ฆฌ๋”๊ธฐ์—์„œ ์ฝ์œผ๋ ค๋ฉด ํŒŒ์ผ์„ ๋‹ค์šด๋กœ๋“œํ•˜์—ฌ ๊ธฐ๊ธฐ๋กœ ์ „์†กํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ง€์›๋˜๋Š” eBook ๋ฆฌ๋”๊ธฐ๋กœ ํŒŒ์ผ์„ ์ „์†กํ•˜๋ ค๋ฉด ๊ณ ๊ฐ์„ผํ„ฐ์—์„œ ์ž์„ธํ•œ ์•ˆ๋‚ด๋ฅผ ๋”ฐ๋ฅด์„ธ์š”.