Linguistic Approaches to Interval Complex Neutrosophic Sets in Decision Making

ยท ยท ยท ยท ยท ยท
Infinite Study
แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜
16
แƒ’แƒ•แƒ”แƒ แƒ“แƒ˜
แƒ›แƒ˜แƒกแƒแƒฆแƒ”แƒ‘แƒ˜
แƒ แƒ”แƒ˜แƒขแƒ˜แƒœแƒ’แƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒ”แƒ‘แƒ˜ แƒ“แƒแƒฃแƒ“แƒแƒกแƒขแƒฃแƒ แƒ”แƒ‘แƒ”แƒšแƒ˜แƒ ย แƒจแƒ”แƒ˜แƒขแƒงแƒ•แƒ”แƒ— แƒ›แƒ”แƒขแƒ˜

แƒแƒ› แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜แƒก แƒจแƒ”แƒกแƒแƒฎแƒ”แƒ‘

One of the most efcient tools for modeling uncertainty in decision-making problems is the neutrosophic set (NS) and its extensions, such as complex NS (CNS), interval NS (INS), and interval complex NS (ICNS). Linguistic variables have been long recognized as a useful tool in decision-making problems for solving the problem of crisp neutrosophic membership degree. In this paper, we aim to introduce new concepts: single-valued linguistic complex neutrosophic set (SVLCNS-2) and interval linguistic complex neutrosophic set (ILCNS-2) that are more applicable and adjustable to real-world implementation than those

of their previous counterparts. Some set-theoretic operations and the operational rules of SVLCNS-2 and ILCNS-2 are designed. Then, gather classications of the candidate versus criteria, gather the signicance weights, gather the weighted rankings of candidates versus criteria and a score function to arrange the candidates are determined. New TOPSIS decision-making procedures in SVLCNS-2 and ICNS-2 are presented and applied to lecturer selection in the case study of the University of Economics and Business, Vietnam National University. The applications demonstrate the usefulness and efciency of the proposal.

แƒจแƒ”แƒแƒคแƒแƒกแƒ”แƒ— แƒ”แƒก แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜

แƒ’แƒ•แƒ˜แƒ—แƒฎแƒแƒ แƒ˜แƒ— แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒแƒ–แƒ แƒ˜.

แƒ˜แƒœแƒคแƒแƒ แƒ›แƒแƒชแƒ˜แƒ แƒฌแƒแƒ™แƒ˜แƒ—แƒฎแƒ•แƒแƒกแƒ—แƒแƒœ แƒ“แƒแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ”แƒ‘แƒ˜แƒ—

แƒกแƒ›แƒแƒ แƒขแƒคแƒแƒœแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒขแƒแƒ‘แƒšแƒ”แƒขแƒ”แƒ‘แƒ˜
แƒ“แƒแƒแƒ˜แƒœแƒกแƒขแƒแƒšแƒ˜แƒ แƒ”แƒ— Google Play Books แƒแƒžแƒ˜ Android แƒ“แƒ iPad/iPhone แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜แƒกแƒ—แƒ•แƒ˜แƒก. แƒ˜แƒก แƒแƒ•แƒขแƒแƒ›แƒแƒขแƒฃแƒ แƒแƒ“ แƒ’แƒแƒœแƒแƒฎแƒแƒ แƒชแƒ˜แƒ”แƒšแƒ”แƒ‘แƒก แƒกแƒ˜แƒœแƒฅแƒ แƒแƒœแƒ˜แƒ–แƒแƒชแƒ˜แƒแƒก แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒแƒœแƒ’แƒแƒ แƒ˜แƒจแƒ—แƒแƒœ แƒ“แƒ แƒกแƒแƒจแƒฃแƒแƒšแƒ”แƒ‘แƒแƒก แƒ›แƒแƒ’แƒชแƒ”แƒ›แƒ—, แƒฌแƒแƒ˜แƒ™แƒ˜แƒ—แƒฎแƒแƒ— แƒกแƒแƒกแƒฃแƒ แƒ•แƒ”แƒšแƒ˜ แƒ™แƒแƒœแƒขแƒ”แƒœแƒขแƒ˜ แƒœแƒ”แƒ‘แƒ˜แƒกแƒ›แƒ˜แƒ”แƒ  แƒแƒ“แƒ’แƒ˜แƒšแƒแƒก, แƒ แƒแƒ’แƒแƒ แƒช แƒแƒœแƒšแƒแƒ˜แƒœ, แƒ˜แƒกแƒ” แƒฎแƒแƒ–แƒ’แƒแƒ แƒ”แƒจแƒ” แƒ แƒ”แƒŸแƒ˜แƒ›แƒจแƒ˜.
แƒšแƒ”แƒžแƒขแƒแƒžแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ”แƒ‘แƒ˜
Google Play-แƒจแƒ˜ แƒจแƒ”แƒซแƒ”แƒœแƒ˜แƒšแƒ˜ แƒแƒฃแƒ“แƒ˜แƒแƒฌแƒ˜แƒ’แƒœแƒ”แƒ‘แƒ˜แƒก แƒ›แƒแƒกแƒ›แƒ”แƒœแƒ แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ˜แƒก แƒ•แƒ”แƒ‘-แƒ‘แƒ แƒแƒฃแƒ–แƒ”แƒ แƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ— แƒจแƒ”แƒ’แƒ˜แƒซแƒšแƒ˜แƒแƒ—.
แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒกแƒฎแƒ•แƒ แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜
แƒ”แƒšแƒ”แƒฅแƒขแƒ แƒแƒœแƒฃแƒšแƒ˜ แƒ›แƒ”แƒšแƒœแƒ˜แƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ–แƒ” แƒฌแƒแƒกแƒแƒ™แƒ˜แƒ—แƒฎแƒแƒ“, แƒ แƒแƒ’แƒแƒ แƒ˜แƒชแƒแƒ Kobo eReaders, แƒ—แƒฅแƒ•แƒ”แƒœ แƒฃแƒœแƒ“แƒ แƒฉแƒแƒ›แƒแƒขแƒ•แƒ˜แƒ แƒ—แƒแƒ— แƒคแƒแƒ˜แƒšแƒ˜ แƒ“แƒ แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒแƒ— แƒ˜แƒ’แƒ˜ แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒแƒจแƒ˜. แƒ“แƒแƒฎแƒ›แƒแƒ แƒ”แƒ‘แƒ˜แƒก แƒชแƒ”แƒœแƒขแƒ แƒ˜แƒก แƒ“แƒ”แƒขแƒแƒšแƒฃแƒ แƒ˜ แƒ˜แƒœแƒกแƒขแƒ แƒฃแƒฅแƒชแƒ˜แƒ”แƒ‘แƒ˜แƒก แƒ›แƒ˜แƒฎแƒ”แƒ“แƒ•แƒ˜แƒ— แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒ”แƒ— แƒคแƒแƒ˜แƒšแƒ”แƒ‘แƒ˜ แƒ›แƒฎแƒแƒ แƒ“แƒแƒญแƒ”แƒ แƒ˜แƒš แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ–แƒ”.