Lectures on Functor Homology

ยท
ยท Progress in Mathematics แžŸแŸ€แžœแž—แŸ…แž‘แžธ 311 ยท Birkhรคuser
แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž…
149
แž‘แŸ†แž–แŸแžš
แž€แžถแžšแžœแžถแž™แžแž˜แŸ’แž›แŸƒ แž“แžทแž„แž˜แžแžทแžœแžถแž™แžแž˜แŸ’แž›แŸƒแž˜แžทแž“แžแŸ’แžšแžผแžœแž”แžถแž“แž•แŸ’แž‘แŸ€แž„แž•แŸ’แž‘แžถแžแŸ‹แž‘แŸ แžŸแŸ’แžœแŸ‚แž„แž™แž›แŸ‹แž”แž“แŸ’แžแŸ‚แž˜

แžขแŸ†แž–แžธแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems.

In the lectures by Aurรฉlien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djamentโ€™s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenkoโ€™s unpublished results.

The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbertโ€™s fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslinโ€™s strict polynomial functors, a conceptual form of modules over the Schur algebra.

Roman Mikhailovโ€™s lectures highlight topological invariants: homoto

py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology.

Lastly, Antoine Touzรฉโ€™s introductory course on homological algebra makes the book accessible to graduate students new to the field.

The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.

แžขแŸ†แž–แžธโ€‹แžขแŸ’แž“แž€แž“แžทแž–แž“แŸ’แž’

Aurรฉlien Djament

A. Djament is a CNRS researcher at the LMJL in Nantes. He studies functors categories and homological stability of infinite families of classical groups.

Wilberd van der Kallen

W. van der Kallen is a retired professor at the Mathematical Institute of Utrecht University. He is interested in representations of algebraic groups.

Roman V. Mikhailov

R. Mikhailkov is a researcher at the Steklov Institute of Mathematics in St-Petersburg. His interests include group theory, topology, category theory, and algebraic K-theory.

Antoine Touzรฉ

A. Touzรฉ holds a CNRS/Universitรฉ Paris 13 chair as a Maรฎtre de Confรฉrences at the LAGA. He is interested in algebraic groups, homological algebra, and algebraic topology.

แžœแžถแž™แžแž˜แŸ’แž›แŸƒแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

แž”แŸ’แžšแžถแž”แŸ‹แž™แžพแž„แžขแŸ†แž–แžธแž€แžถแžšแž™แž›แŸ‹แžƒแžพแž‰แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”

แžขแžถแž“โ€‹แž–แŸแžแŸŒแž˜แžถแž“

แž‘แžผแžšแžŸแž–แŸ’แž‘แž†แŸ’แž›แžถแžแžœแŸƒ แž“แžทแž„โ€‹แžแŸแž”แŸ’แž›แŸแž
แžŠแŸ†แžกแžพแž„แž€แž˜แŸ’แž˜แžœแžทแž’แžธ Google Play Books แžŸแž˜แŸ’แžšแžถแž”แŸ‹ Android แž“แžทแž„ iPad/iPhone แŸ” แžœแžถโ€‹แž’แŸ’แžœแžพแžŸแž˜แž€แžถแž›แž€แž˜แŸ’แž˜โ€‹แžŠแŸ„แž™แžŸแŸ’แžœแŸแž™แž”แŸ’แžšแžœแžแŸ’แžแžทแž‡แžถแž˜แžฝแž™โ€‹แž‚แžŽแž“แžธโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€โ€‹ แž“แžทแž„โ€‹แžขแž“แžปแž‰แŸ’แž‰แžถแžแžฑแŸ’แž™โ€‹แžขแŸ’แž“แž€แžขแžถแž“แž–แŸแž›โ€‹แž˜แžถแž“แžขแŸŠแžธแž“แž’แžบแžŽแžทแž แžฌแž‚แŸ’แž˜แžถแž“โ€‹แžขแŸŠแžธแž“แž’แžบแžŽแžทแžโ€‹แž“แŸ…แž‚แŸ’แžšแž”แŸ‹แž‘แžธแž€แž“แŸ’แž›แŸ‚แž„แŸ”
แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšโ€‹แž™แžฝแžšแžŠแŸƒ แž“แžทแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžš
แžขแŸ’แž“แž€แžขแžถแž…แžŸแŸ’แžŠแžถแž”แŸ‹แžŸแŸ€แžœแž—แŸ…แž‡แžถแžŸแŸ†แžกแŸแž„แžŠแŸ‚แž›แž”แžถแž“แž‘แžทแž‰แž“แŸ…แž€แŸ’แž“แžปแž„ Google Play แžŠแŸ„แž™แž”แŸ’แžšแžพแž€แž˜แŸ’แž˜แžœแžทแž’แžธแžšแžปแž€แžšแž€แžแžถแž˜แžขแŸŠแžธแž“แž’แžบแžŽแžทแžแž€แŸ’แž“แžปแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšแžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”
eReaders แž“แžทแž„โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แž•แŸ’แžŸแŸแž„โ€‹แž‘แŸ€แž
แžŠแžพแž˜แŸ’แž”แžธแžขแžถแž“แž“แŸ…แž›แžพโ€‹แžงแž”แž€แžšแžŽแŸ e-ink แžŠแžผแž…แž‡แžถโ€‹แžงแž”แž€แžšแžŽแŸแžขแžถแž“โ€‹แžŸแŸ€แžœแž—แŸ…แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€ Kobo แžขแŸ’แž“แž€แž“แžนแž„แžแŸ’แžšแžผแžœโ€‹แž‘แžถแž‰แž™แž€โ€‹แžฏแž€แžŸแžถแžš แž แžพแž™โ€‹แž•แŸ’แž‘แŸแžšแžœแžถแž‘แŸ…โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ” แžŸแžผแž˜แžขแž“แžปแžœแžแŸ’แžแžแžถแž˜โ€‹แž€แžถแžšแžŽแŸ‚แž“แžถแŸ†แž›แž˜แŸ’แžขแžทแžแžšแž”แžŸแŸ‹แž˜แž‡แŸ’แžˆแž˜แžŽแŸ’แžŒแž›แž‡แŸ†แž“แžฝแž™ แžŠแžพแž˜แŸ’แž”แžธแž•แŸ’แž‘แŸแžšแžฏแž€แžŸแžถแžšโ€‹แž‘แŸ…แžงแž”แž€แžšแžŽแŸแžขแžถแž“แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แžŠแŸ‚แž›แžŸแŸ’แž‚แžถแž›แŸ‹แŸ”