Handbook of Combinatorial Optimization

Β·
Β· Springer Science & Business Media
4,0
2 Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜e
Π•-књига
2406
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π°
ΠžΡ†Π΅Π½Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜Π΅ нису Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ Β Π‘Π°Π·Π½Π°Ρ˜Ρ‚Π΅ вишС

О овој С-књизи

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dualheuristics).

ΠžΡ†Π΅Π½Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜Π΅

4,0
2 Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜e

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΎΠ²Ρƒ Π΅-ΠΊΡšΠΈΠ³Ρƒ

ΠˆΠ°Π²ΠΈΡ‚Π΅ Π½Π°ΠΌ својС ΠΌΠΈΡˆΡ™Π΅ΡšΠ΅.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ Ρ‡ΠΈΡ‚Π°ΡšΡƒ

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Google Play књигС Π·Π° Android ΠΈ iPad/iPhone. Аутоматски сС ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΡƒΡ˜Π΅ са Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΈ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π²Π°ΠΌ Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ Π³Π΄Π΅ Π³ΠΎΠ΄ Π΄Π° сС Π½Π°Π»Π°Π·ΠΈΡ‚Π΅.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΎΠ²ΠΈ ΠΈ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎ-књигС ΠΊΡƒΠΏΡ™Π΅Π½Π΅ Π½Π° Google Play-Ρƒ ΠΏΠΎΠΌΠΎΡ›Ρƒ Π²Π΅Π±-ΠΏΡ€Π΅Π³Π»Π΅Π΄Π°Ρ‡Π° Π½Π° Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Ρƒ.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈ
Π”Π° бистС Ρ‡ΠΈΡ‚Π°Π»ΠΈ Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈΠΌΠ° којС користС Π΅-мастило, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Kobo Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ, Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅ΡƒΠ·ΠΌΠ΅Ρ‚Π΅ Ρ„Π°Ρ˜Π» ΠΈ прСнСсСтС Π³Π° Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜. ΠŸΡ€Π°Ρ‚ΠΈΡ‚Π΅ Π΄Π΅Ρ‚Π°Ρ™Π½Π° упутства ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π° Π·Π° ΠΏΠΎΠΌΠΎΡ› Π΄Π° бистС ΠΏΡ€Π΅Π½Π΅Π»ΠΈ Ρ„Π°Ρ˜Π»ΠΎΠ²Π΅ Ρƒ ΠΏΠΎΠ΄Ρ€ΠΆΠ°Π½Π΅ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡Π΅.