Existence of the Sectional Capacity

ยท ยท
ยท American Mathematical Society: Memoirs of the American Mathematical Society เบซเบปเบงเบ—เบต 690 ยท American Mathematical Soc.
เบ›เบถเป‰เบกเบญเบตเบšเบธเบ
130
เปœเป‰เบฒ
เบšเปเปˆเป„เบ”เป‰เบขเบฑเป‰เบ‡เบขเบทเบ™เบเบฒเบ™เบˆเบฑเบ”เบญเบฑเบ™เบ”เบฑเบš เปเบฅเบฐ เบ„เบณเบ•เบดเบŠเบปเบก เบชเบถเบเบชเบฒเป€เบžเบตเปˆเบกเป€เบ•เบตเบก

เบเปˆเบฝเบงเบเบฑเบšเบ›เบถเป‰เบก e-book เบ™เบตเป‰

Let $K$ be a global field, and let $X/K$ be an equidimensional, geometrically reduced projective variety. For an ample line bundle $\overline{\mathcal L}$ on $X$ with norms $\\ \_v$ on the spaces of sections $K_v \otimes_K \Gamma(X,\L^{\otimes n})$, we prove the existence of the sectional capacity $S_Gamma(\overline{\mathcal L})$, giving content to a theory proposed by Chinburg. In the language of Arakelov Theory, the quantity $-\log(S_Gamma(\overline{\mathcal L}))$ generalizes the top arithmetic self-intersection number of a metrized line bundle, and the existence of the sectional capacity is equivalent to an arithmetic Hilbert-Samuel Theorem for line bundles with singular metrics.In the case where the norms are induced by metrics on the fibres of ${\mathcal L}$, we establish the functoriality of the sectional capacity under base change, pullbacks by finite surjective morphisms, and products. We study the continuity of $S_Gamma(\overline{\mathcal L})$ under variation of the metric and line bundle, and we apply this to show that the notion of $v$-adic sets in $X(\mathbb C_v)$ of capacity $0$ is well-defined. Finally, we show that sectional capacities for arbitrary norms can be well-approximated using objects of finite type.

เปƒเบซเป‰เบ„เบฐเปเบ™เบ™ e-book เบ™เบตเป‰

เบšเบญเบเบžเบงเบเป€เบฎเบปเบฒเบงเปˆเบฒเบ—เปˆเบฒเบ™เบ„เบดเบ”เปเบ™เบงเปƒเบ”.

เบญเปˆเบฒเบ™โ€‹เบ‚เปเป‰โ€‹เบกเบนเบ™โ€‹เบ‚เปˆเบฒเบงโ€‹เบชเบฒเบ™

เบชเบฐเบกเบฒเบ”เป‚เบŸเบ™ เปเบฅเบฐ เปเบ—เบฑเบšเป€เบฅเบฑเบ”
เบ•เบดเบ”เบ•เบฑเป‰เบ‡ เปเบญเบฑเบš Google Play Books เบชเบณเบฅเบฑเบš Android เปเบฅเบฐ iPad/iPhone. เบกเบฑเบ™เบŠเบดเป‰เบ‡เบ‚เปเป‰เบกเบนเบ™เป‚เบ”เบเบญเบฑเบ”เบ•เบฐเป‚เบ™เบกเบฑเบ”เบเบฑเบšเบšเบฑเบ™เบŠเบตเบ‚เบญเบ‡เบ—เปˆเบฒเบ™ เปเบฅเบฐ เบญเบฐเบ™เบธเบเบฒเบ”เปƒเบซเป‰เบ—เปˆเบฒเบ™เบญเปˆเบฒเบ™เบ—เบฒเบ‡เบญเบญเบ™เบฅเบฒเบ เบซเบผเบท เปเบšเบšเบญเบญเบšเบฅเบฒเบเป„เบ”เป‰ เบšเปเปˆเบงเปˆเบฒเบ—เปˆเบฒเบ™เบˆเบฐเบขเบนเปˆเปƒเบช.
เปเบฅเบฑเบšเบ—เบฑเบญเบš เปเบฅเบฐ เบ„เบญเบกเบžเบดเบงเป€เบ•เบต
เบ—เปˆเบฒเบ™เบชเบฒเบกเบฒเบ”เบŸเบฑเบ‡เบ›เบถเป‰เบกเบชเบฝเบ‡เบ—เบตเปˆเบŠเบทเป‰เปƒเบ™ Google Play เป‚เบ”เบเปƒเบŠเป‰เป‚เบ›เบฃเปเบเบฃเบกเบ—เปˆเบญเบ‡เป€เบงเบฑเบšเบ‚เบญเบ‡เบ„เบญเบกเบžเบดเบงเป€เบ•เบตเบ‚เบญเบ‡เบ—เปˆเบฒเบ™เป„เบ”เป‰.
eReaders เปเบฅเบฐเบญเบธเบ›เบฐเบเบญเบ™เบญเบทเปˆเบ™เป†
เป€เบžเบทเปˆเบญเบญเปˆเบฒเบ™เปƒเบ™เบญเบธเบ›เบฐเบเบญเบ™ e-ink เป€เบŠเบฑเปˆเบ™: Kobo eReader, เบ—เปˆเบฒเบ™เบˆเบณเป€เบ›เบฑเบ™เบ•เป‰เบญเบ‡เบ”เบฒเบงเป‚เบซเบผเบ”เป„เบŸเบฅเปŒ เปเบฅเบฐ เป‚เบญเบ™เบเป‰เบฒเบเบกเบฑเบ™เป„เบ›เปƒเบชเปˆเบญเบธเบ›เบฐเบเบญเบ™เบ‚เบญเบ‡เบ—เปˆเบฒเบ™เบเปˆเบญเบ™. เบ›เบฐเบ•เบดเบšเบฑเบ”เบ•เบฒเบกเบ„เบณเปเบ™เบฐเบ™เบณเบฅเบฐเบญเบฝเบ”เบ‚เบญเบ‡ เบชเบนเบ™เบŠเปˆเบงเบเป€เบซเบผเบทเบญ เป€เบžเบทเปˆเบญเป‚เบญเบ™เบเป‰เบฒเบเป„เบŸเบฅเปŒเป„เปƒเบชเปˆ eReader เบ—เบตเปˆเบฎเบญเบ‡เบฎเบฑเบš.