Constrained Conditional Model: Fundamentals and Applications

¡ Artificial Intelligence āĻŦāχ 208 ¡ One Billion Knowledgeable ¡ Mason-āĻāϰ āĻ•āĻŖā§āϠ⧇ (Google āĻĨ⧇āϕ⧇) AI-āĻ¨ā§āϝāĻžāϰ⧇āĻŸā§‡āĻĄ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•
āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•
2 āϘāĻŖā§āϟāĻž 30 āĻŽāĻŋāύāĻŋāϟ
āϏāĻ‚āĻ•ā§āώāĻŋāĻĒā§āϤ āύ⧟
āωāĻĒāϝ⧁āĻ•ā§āϤ
AI-āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻŦāĻ°ā§āĻŖāύāĻž āĻ•āϰāĻž
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ
15 āĻŽāĻŋāύāĻŋāϟ āϏāĻŽā§Ÿā§‡āϰ āύāĻŽā§āύāĻž āĻĒ⧇āϤ⧇ āϚāĻžāύ? āϝ⧇āϕ⧋āύāĻ“ āϏāĻŽā§Ÿ āĻļ⧁āύ⧁āύ, āĻāĻŽāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ⧇ āĻĨāĻžāĻ•āϞ⧇āĻ“āĨ¤Â 
āϜ⧁⧜⧁āύ

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

What Is Constrained Conditional Model


A constrained conditional model, also known as a constrained conditional model (CCM), is a paradigm for machine learning and inference that enhances the learning of conditional models by applying declarative constraints. It is possible to utilize the constraint as a mechanism for incorporating expressive prior knowledge into the model and for instructing the learnt model to bias the assignments it generates to satisfy the constraints. While preserving the modularity and tractability of training and inference, the framework may be utilized to enable decisions in an expressive output space.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Constrained conditional model


Chapter 2: Machine learning


Chapter 3: Natural language processing


Chapter 4: Natural language generation


Chapter 5: Feature engineering


Chapter 6: Constrained optimization


Chapter 7: Textual entailment


Chapter 8: Transliteration


Chapter 9: Structured prediction


Chapter 10: Semantic role labeling


(II) Answering the public top questions about constrained conditional model.


(III) Real world examples for the usage of constrained conditional model in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of constrained conditional model' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of constrained conditional model.

āϞ⧇āĻ–āĻ• āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āϕ⧀āĻ­āĻžāĻŦ⧇ āĻļ⧁āύāĻŦ⧇āύ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
āφāĻĒāύāĻŋ āφāĻĒāύāĻžāϰ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ Google Play āϤ⧇ āϕ⧇āύāĻž āĻŦāχāϗ⧁āϞāĻŋ āĻĒ⧜āϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤

āϏāĻŋāϰāĻŋāϜ āĻĒāĻĄāĻŧāĻž āϚāĻžāϞāĻŋā§Ÿā§‡ āϝāĻžāύ

Fouad Sabry āĻāϰ āĻĨ⧇āϕ⧇ āφāϰ⧋

āĻāχ āϧāϰāϪ⧇āϰ āφāϰāĻ“ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•