Algorithmic Probability: Fundamentals and Applications

¡ Artificial Intelligence āĻŦāχ 107 ¡ One Billion Knowledgeable ¡ Mason-āĻāϰ āĻ•āĻŖā§āϠ⧇ (Google āĻĨ⧇āϕ⧇) AI-āĻ¨ā§āϝāĻžāϰ⧇āĻŸā§‡āĻĄ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•
āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•
2 āϘāĻŖā§āϟāĻž 37 āĻŽāĻŋāύāĻŋāϟ
āϏāĻ‚āĻ•ā§āώāĻŋāĻĒā§āϤ āύ⧟
āωāĻĒāϝ⧁āĻ•ā§āϤ
AI-āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻŦāĻ°ā§āĻŖāύāĻž āĻ•āϰāĻž
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ
15 āĻŽāĻŋāύāĻŋāϟ āϏāĻŽā§Ÿā§‡āϰ āύāĻŽā§āύāĻž āĻĒ⧇āϤ⧇ āϚāĻžāύ? āϝ⧇āϕ⧋āύāĻ“ āϏāĻŽā§Ÿ āĻļ⧁āύ⧁āύ, āĻāĻŽāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ⧇ āĻĨāĻžāĻ•āϞ⧇āĻ“āĨ¤Â 
āϜ⧁⧜⧁āύ

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

What Is Algorithmic Probability


In the field of algorithmic information theory, algorithmic probability is a mathematical method that assigns a prior probability to a given observation. This method is sometimes referred to as Solomonoff probability. In the 1960s, Ray Solomonoff was the one who came up with the idea. It has applications in the theory of inductive reasoning as well as the analysis of algorithms. Solomonoff combines Bayes' rule and the technique in order to derive probabilities of prediction for an algorithm's future outputs. He does this within the context of his broad theory of inductive inference.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Algorithmic Probability


Chapter 2: Kolmogorov Complexity


Chapter 3: Gregory Chaitin


Chapter 4: Ray Solomonoff


Chapter 5: Solomonoff's Theory of Inductive Inference


Chapter 6: Algorithmic Information Theory


Chapter 7: Algorithmically Random Sequence


Chapter 8: Minimum Description Length


Chapter 9: Computational Learning Theory


Chapter 10: Inductive Probability


(II) Answering the public top questions about algorithmic probability.


(III) Real world examples for the usage of algorithmic probability in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of algorithmic probability' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of algorithmic probability.

āϞ⧇āĻ–āĻ• āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āϕ⧀āĻ­āĻžāĻŦ⧇ āĻļ⧁āύāĻŦ⧇āύ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
āφāĻĒāύāĻŋ āφāĻĒāύāĻžāϰ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ Google Play āϤ⧇ āϕ⧇āύāĻž āĻŦāχāϗ⧁āϞāĻŋ āĻĒ⧜āϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤

āϏāĻŋāϰāĻŋāϜ āĻĒāĻĄāĻŧāĻž āϚāĻžāϞāĻŋā§Ÿā§‡ āϝāĻžāύ

Fouad Sabry āĻāϰ āĻĨ⧇āϕ⧇ āφāϰ⧋

āĻāχ āϧāϰāϪ⧇āϰ āφāϰāĻ“ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•